Geniculo-hypothalamic tract lesions block chlordiazepoxide-induced phase advances in Syrian hamsters.

نویسندگان

  • S M Biello
  • M E Harrington
  • R Mason
چکیده

Administration of the benzodiazepine triazolam at the appropriate time in the circadian cycle has been shown to induce phase shifts in hamster circadian rhythms. These phase shifts can be blocked by geniculo-hypothalamic tract (GHT) ablation or by restraint of activity. The present study examined the effects of the benzodiazepine chlordiazepoxide on running-wheel activity rhythms of hamsters. The phase-advancing effect of intraperitoneal injections of chlordiazepoxide administered at circadian time 6 (CT 6) was dose-dependent. Average shifts ranged from 6 min at a dose of 0.05 mg/kg to 135 min at a dose of 200 mg/kg. Four of twenty hamsters did not show a phase shift to any dose tested. Phase advance shifts to chlordiazepoxide (CT 6; 100 mg/kg) were blocked by GHT lesions. Chlordiazepoxide injections at doses which induced phase shifts were often followed by sedation. These results indicate that chlordiazepoxide is similar to triazolam, in that its ability to induce phase shifts at circadian time 6 is blocked by GHT lesions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract.

The suprachiasmatic nuclei (SCN) contain the major pacemaker for mammalian circadian rhythms. The SCN receive photic input both directly, via the retinohypothalamic tract (RHT), and indirectly, via the geniculohypothalamic tract (GHT), which originates in cells in the intergeniculate leaflet (IGL) and anterior portions of the ventral lateral geniculate nucleus (vLGN). We tested whether electric...

متن کامل

The effects of GABA and benzodiazepines on neurones in the suprachiasmatic nucleus (SCN) of Syrian hamsters.

Administration of benzodiazepines at appropriate times in the circadian cycle induce phase-shifts in circadian locomotor activity. The possibility that benzodiazepine-induced shifts are mediated at the level of the suprachiasmatic nuclei (SCN), identified as the circadian pacemaker in mammals, was examined electrophysiologically. Extracellular recordings were made from Syrian hamster (Mesocrice...

متن کامل

AP lesions block suppression of estrous behavior, but not estrous cyclicity, in food-deprived Syrian hamsters.

Food deprivation inhibits ovulatory cycles and estrous behavior in Syrian hamsters. Lesions of the area postrema (AP) prevented the suppression of estrous behavior in food-deprived hamsters, but they did not prevent the suppression of estrous cyclicity or the increase in running-wheel activity caused by food deprivation. Food deprivation or treatment with pharmacological inhibitors of glycolysi...

متن کامل

Neuronal input pathways to the brain's biological clock and their functional significance.

Circadian rhythms are entrained daily by environmental photic and non-photic cues. The present review describes the anatomy and functional characteristics of the three major input pathways to the circadian clock mediating entrainment: the retino-hypothalamic tract, the geniculo-hypothalamic tract and the midbrain raphe projection.

متن کامل

Photoperiodic control of oestrous cycles in Syrian hamsters: mediation by the mediobasal hypothalamus.

To assess whether the mediobasal hypothalamus (MBH) is necessary for photoperiodic control of oestrous cycles and prolactin secretion, we tested intact female Syrian hamsters (controls) and those that had sustained unilateral or bilateral lesions of the MBH. All hamsters displayed 4-day oestrous cycles postoperatively in the long-day photoperiod (14 h light/day); control females and those with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 552 1  شماره 

صفحات  -

تاریخ انتشار 1991